Drought Monitoring and Early Warning System for Central Asia

Rashyd Zaaboul r.zaaboul@biosaline.org.ae

May 5th, 2021

Outline

- Drought management: concept and pillars
- Drought management in Central Asia
- Drought monitoring in Central Asia: existing systems
- Drought monitoring for Central Asia (RDMS-CA): prototype
- RDMS-CA: validation process
- Early Warning System for CA: drought forecasting system

Drought management: concept and pillars

Based on Integrated Drought Management Plan (IDMP) developed by WMO and GWP

Vulnerability and impact assessment: who is at risk and when

Monitoring and early warning systems: which area is impacted and how

Mitigation and response: what to do, when and who to target

Drought management in Central Asia

United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), Center for Emergency Situations and Disaster Risk Reduction (2020) published a study on:

"ASSESSMENT OF DROUGHT CHALLENGES AND DROUGHT MONITORING MODELS IN CENTRAL ASIAN REGION"

nited Nations Economic and Social Commission for Asia and the Pacific Center for Emergency Situations and Disaster Risk Reduction

Letter of Agreement No. 2019-0010 on collaboration and cooperation for Enhancing the capacity for the developing countries in Central Asia on effective use of space applications for drought monitoring and early warning through the Regional Drought Mechanism

RESEARCH ON ASSESSMENT OF DROUGHT CHALLENGES AND DROUGHT MONITORING MODELS IN CENTRAL ASIAN REGION

CENTER FOR EMERGENCY SITUATIONS AND DISASTER RISK REDUCTION 2020

Drought monitoring in Central Asia

National Hydrometeorological Services network (Soil moisture) Some issues with this network (identified under CACILM-2):

- Agrometeorological equipment is physically outdated and requires urgent updating
- Technical conditions leading to disruption of the agrometeorological products
- In some stations, acute shortage of instruments for determining moisture, freezing and thawing of the soil
- No agrometeorological observations and software for predicting soil and atmospheric drought, dry wind, hail, and ice

Drought monitoring in CA: existing systems

Drought monitoring systems based on ground-based observations

Index Name	Symbol	Calculation	Initial information for	Availability of
			calculation	information for its
				calculation
Hydrothermal coefficient of	(HTC) ¹⁸ ,		Σr - the sum of	Available
Selvaninov ¹⁷ ,		$\sum r$	precipitation (mm)	
		$HTC = \frac{2}{0.1\Sigma_{1}}$	Σt - the sum of the sum	
		$0,1 \sum t$	of the active daily	
			average air temperatures	
Coefficient of humidification by	K	D	R - the sum of total	Partially available
Ivanov ¹⁹		$K = \frac{K}{m}$	precipitation for the	
		E_{o}	year, mm	
		-0	\overline{F}_{e} - volatility per	
			\mathcal{L}_0 year, mm	
Pedya's Index	Si	α () $\Delta T \Delta R \Delta E$	$\Box T$, $\Box R$, $\Box Y$ -	Partially available
(atmospheric soil drought)		$S_i(\tau) =$	anomalies of air	
		$\sigma_T \sigma_R \sigma_E$	temperature,	
Pedya's Index	Si	$\Delta T \Delta R$	precipitation and	Available
(atmospheric drought)		$S_i(\tau) =$	humidity in the active	
		$\sigma_T \sigma_R$	soil layer (up to 1 m)	
Pedya's Index	Si	$\wedge \wedge E$		Partially available
(soil drought)		$S_i(\tau) = \frac{1}{2}$		
		$\sigma_{\scriptscriptstyle E}$		
Standardized Precipitation	SPI	$SPI = F^{-1}G(R)$	Precipitation	Available
Index ^{20 21} .			-	
Standardized Precipitation	SPEI	Di= Ri-PETi	(R)-Monthly	
Evapotranspiration index.22			precipitation and PET	
			potential	
			evapotranspiration	
Palmer Drought Severity	PDSI		Precipitation,	Partially available
Index. ^{23 2425}			temperature, moisture	
			available	

Drought monitoring in CA: existing systems

Drought monitoring systems based on remote sensing

Index Name	Symbol	Calculation formula	Initial information for calculation	Availability of information for its calculation
Normalized Differential Vegetation Index ²⁸	NDVI	$NDVI = \frac{NIR - RED}{NIR + RED}$		
Vegetation Index ²⁹ :	VCI	$VCI = \frac{NDVI_i - NDVI_{\min}}{NDVI_{\max} - NDVI_{\min}}$	Low and medium spatial resolution	
Integral Vegetation Index	IVI	$IVI = \sum_{i=1}^{18} NDVI_i$	satellite data (NOAA- AVHRR, SPOT-IV, MODIS), air	Available
Integral index of vegetation conditions	IVCI	$IVCI = \frac{IVI_i - IVI_{\min}}{IVI_{\max} - IVI_{\min}}$	temperature	
Drought Index 30	ID	ID = (T4d + T4n) / NDVI	1	

In 2011, the Kazakhstan National Center for Space Research and Technology (NCSRT) together with the LLP (Scientific and Production Center for Grain Management named after A.I. Barayev) developed a drought monitoring system based on remote sensing

Drought monitoring: existing global systems

System	Index used	Resolution	Type of information	Open source
https://iridl.ldeo.columbia.edu/maproom/Global /Drought/Global/CPC_GOB/Analysis.html	3-month SPI	1°x1°	Global map and time series at locations	No
https://gdis- noaa.hub.arcgis.com/pages/drought- monitoring	SPI, SPEI, ESI, Soil Moisture, CDI for Europe only	Various resolutions	Static maps	No
https://www.apcc21.org/ser/global.do?lang=en	1, 3, 6 and 12 months SPI	2.5°x2.5°	Static maps	No
http://drought.eng.uci.edu/	SPI, SSI and MSDI	Various resolutions	Static maps (last map available February 2016)	No

Main characteristics

- Meteorological SPI and SPEI indices only
- Coarse resolution (around 100km by 100km)
- Providing only static maps

RDMS-CA: Prototype version 1

() ICBA

D1 Moderate Drough

D0 Abnormally Dr

No Drought

Water Bodies

SMO Anomaly for March 2021

 Missing points due to cloud contamination in the LST and/or NDVI products

Composite Drought Index for March 2021

RDMS-CA: Validation process

Understanding drought drivers: Teleconnections

- · Periodic variation of relative position of pressure lows/highs
- Associated with **sea-surface temperature and precipitation**

Can influence even at great distance

Examples:

- North Atlantic Oscillation,
 - El Nino Southern Oscillation,

etc.

RDMS-CA: Validation process

Data on cereal production and others (water and livestock) will help in tuning CDI for the region and for each country

Early Warning System for CA: drought forecasting system

• Seasonal forecasting of weather parameters: provided by Copernicus climate service including data from ECMWF, UK Met Office, Meteo France, DWD, CMCC, NCEP and JMA

- List of available parameters
- Period covered: 1993-present
- Forecast range: 7 months
- Time frequency: 6 hours
- Resolution: 1°x1°
- Area covered: Globe, possibility to extract subregion

🗌 10m u-component of wir	nd	🗌 10m v-compor	ent of wind
🗌 10m wind gust since pre	vious post-processing	🗌 2m dewpoint t	emperature
🗌 2m temperature		📃 Eastward turbı	ulent surface stress
Evaporation		🗌 Land-sea mask	(
🗌 Maximum 2m temperatu	ure in the last 24 hours	🗌 Mean sea level	pressure
🗌 Minimum 2m temperatu	ire in the last 24 hours	Northward tur	bulent surface stress
Orography		🗌 Runoff	
🗌 Sea surface temperature	2	Sea-ice cover	
Snow density		🗌 Snow depth	
Snowfall		🗌 Soil temperatu	re level 1
Sub-surface runoff		Surface latent	heat flux
Surface net solar radiation	on	🗌 Surface net the	ermal radiation
Surface runoff		🗌 Surface sensib	le heat flux
Surface solar radiation d	ownwards	Surface therma	al radiation downwards
🗌 TOA incident solar radiat	tion	🗌 Top net solar r	adiation
Top net thermal radiation	n	Total cloud cov	/er
Total precipitation			

Climate Change

Early Warning System for CA: drought forecasting system

- Version 0 of Early Warning system will include:
- SPI (1, 3 and 6 months)
- SPEI (1, 3 and 6 months)

Version 1 of EWS: Crop growth simulations

- An ensemble of simulations based on seasonal weather forecasts in selected agro-climate zones
- Candidate models: WOFOST and CROPSYST

Version 1-Bis of EWS: Hydrological simulations

- An ensemble of simulations based on seasonal weather forecasts in selected basins
- Candidate models: VIC, SWAT and LIS

Next steps

- Identify regional and local partners to validate the Drought Monitoring and Early Warning system at regional, national and subnational levels
- Discuss with CAREC and local partners the requirements for such collaboration and alignment with the current project objectives
- Develop, in partnership with CAREC and partners, an implementation workplan and identify potential donors to support this activity

Thank you

ICBA is supported by the Government of the United Arab Emirates and the Islamic Development Bank.